The search functionality is under construction.

Author Search Result

[Author] Masaki AIDA(51hit)

21-40hit(51hit)

  • Oscillation Model for Describing Network Dynamics Caused by Asymmetric Node Interaction Open Access

    Masaki AIDA  Chisa TAKANO  Masayuki MURATA  

     
    POSITION PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/07/03
      Vol:
    E101-B No:1
      Page(s):
    123-136

    This paper proposes an oscillation model for analyzing the dynamics of activity propagation across social media networks. In order to analyze such dynamics, we generally need to model asymmetric interactions between nodes. In matrix-based network models, asymmetric interaction is frequently modeled by a directed graph expressed as an asymmetric matrix. Unfortunately, the dynamics of an asymmetric matrix-based model is difficult to analyze. This paper, first of all, discusses a symmetric matrix-based model that can describe some types of link asymmetry, and then proposes an oscillation model on networks. Next, the proposed oscillation model is generalized to arbitrary link asymmetry. We describe the outlines of four important research topics derived from the proposed oscillation model. First, we show that the oscillation energy of each node gives a generalized notion of node centrality. Second, we introduce a framework that uses resonance to estimate the natural frequency of networks. Natural frequency is important information for recognizing network structure. Third, by generalizing the oscillation model on directed networks, we create a dynamical model that can describe flaming on social media networks. Finally, we show the fundamental equation of oscillation on networks, which provides an important breakthrough for generalizing the spectral graph theory applicable to directed graphs.

  • Network Resonance Method: Estimating Network Structure from the Resonance of Oscillation Dynamics Open Access

    Satoshi FURUTANI  Chisa TAKANO  Masaki AIDA  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/10/18
      Vol:
    E102-B No:4
      Page(s):
    799-809

    Spectral graph theory, based on the adjacency matrix or the Laplacian matrix that represents the network topology and link weights, provides a useful approach for analyzing network structure. However, in large scale and complex social networks, since it is difficult to completely know the network topology and link weights, we cannot determine the components of these matrices directly. To solve this problem, we propose a method for indirectly determining the Laplacian matrix by estimating its eigenvalues and eigenvectors using the resonance of oscillation dynamics on networks.

  • Diffusion-Type Autonomous Decentralized Flow Control for End-to-End Flow in High-Speed Networks

    Chisa TAKANO  Masaki AIDA  

     
    PAPER-Network

      Vol:
    E88-B No:4
      Page(s):
    1559-1567

    We have proposed diffusion-type flow control as a solution for the extremely time-sensitive flow control required for high-speed networks. In our method of flow control, we design in advance simple and appropriate rules for action at the nodes, and these automatically result in stable and efficient network-wide performance through local interactions between nodes. Specifically, we design the rules for the flow control action of each node that simulates the local interaction of a diffusion phenomenon, in order that the packet density is diffused throughout the network as soon as possible. However, in order to make a comparison with other flow control methods under the same conditions, the evaluations in our previous studies used a closed network model, in which the number of packets was unchanged. This paper investigates the performance of our flow control method for an end-to-end flow, in order to show that it is still effective in more realistic networks. We identify the key issues associated with our flow control method when applied to an open network model, and demonstrate a two-step solution. First, we consider the rule for flow control action at the boundary node, which is the ingress node in the network, and propose a rule to achieve smooth diffusion of the packet density. Secondly, we introduce a shaping mechanism, which keeps the number of packets in the network at an appropriate level.

  • Modeling Polarization Caused by Empathetic and Repulsive Reaction in Online Social Network

    Naoki HIRAKURA  Masaki AIDA  Konosuke KAWASHIMA  

     
    PAPER-Multimedia Systems for Communications

      Pubricized:
    2022/02/16
      Vol:
    E105-B No:8
      Page(s):
    990-1001

    While social media is now used by many people and plays a role in distributing information, it has recently created an unexpected problem: the actual shrinkage of information sources. This is mainly due to the ease of connecting people with similar opinions and the recommendation system. Biased information distribution promotes polarization that divides people into multiple groups with opposing views. Also, people may receive only the seemingly positive information that they prefer, or may trigger them into holding onto their opinions more strongly when they encounter opposing views. This, combined with the characteristics of social media, is accelerating the polarization of opinions and eventually social division. In this paper, we propose a model of opinion formation on social media to simulate polarization. While based on the idea that opinion neutrality is only relative, this model provides new techniques for dealing with polarization.

  • A Study of Control Plane Stability with Retry Traffic: Comparison of Hard- and Soft-State Protocols

    Masaki AIDA  Chisa TAKANO  Masayuki MURATA  Makoto IMASE  

     
    PAPER-Network Management/Operation

      Vol:
    E91-B No:2
      Page(s):
    437-445

    Recently problems with commercial IP telephony systems have been reported one after another, in Japan. One of the important causes is congestion in the control plane. It has been recognized that with the current Internet it is important to control not only congestion caused by overload of the data plane but also congestion caused by overload of the control plane. In particular, "retry traffic," such as repeated attempts to set up a connection, tends to cause congestion. In general, users make repeated attempt to set up connections not only when the data plane is congested but also when the control plane in the network is overloaded. The latter is caused by user behavior: an increase in the waiting time for the processing of connection establishment to be completed tends to increase his or her initiation of reattempts. Thus, it is important to manage both data plane and control-plane resources effectively. In this paper, we focus on RSVP-based communication services including IP telephony, and introduce a model that takes account of both data-plane and control-plane systems, and we examine the behavior of retry traffic. In addition, we compare the system stability achieved by two different resource management methods, the hard-state method and the soft-state method.

  • Mitigation of Flash Crowd in Web Services By Providing Feedback Information to Users

    Harumasa TADA  Masayuki MURATA  Masaki AIDA  

     
    PAPER

      Pubricized:
    2020/09/18
      Vol:
    E104-D No:1
      Page(s):
    63-75

    The term “flash crowd” describes a situation in which a large number of users access a Web service simultaneously. Flash crowds, in particular, constitute a critical problem in e-commerce applications because of the potential for enormous economic damage as well as difficulty in management. Flash crowds can become more serious depending on users' behavior. When a flash crowd occurs, the delay in server response may cause users to retransmit their requests, thereby adding to the server load. In the present paper, we propose to use the psychological factors of the users for flash crowd mitigation. We aim to analyze changes in the user behavior by presenting feedback information. To evaluate the proposed method, we performed subject experiments and stress tests. Subject experiments showed that, by providing feedback information, the average number of request retransmissions decreased from 1.33 to 0.09, and the subjects that abandoned the service decreased from 81% to 0%. This confirmed that feedback information is effective in influencing user behavior in terms of abandonment and retransmission of requests. Stress tests showed that the average number of retransmissions decreased by 41%, and the proportion of abandonments decreased by 30%. These results revealed that the presentation of feedback information could mitigate the damage caused by flash crowds in real websites, although the effect is limited. The proposed method can be used in conjunction with conventional methods to handle flash crowds.

  • Stochastic Model of Internet Access Patterns

    Masaki AIDA  Tetsuya ABE  

     
    PAPER-Traffic Measurement and Analysis

      Vol:
    E84-B No:8
      Page(s):
    2142-2150

    This paper investigates the stochastic property of the packet destinations and proposes an address generation algorithm which is applicable for describing various Internet access patterns. We assume that a stochastic process of Internet access satisfies the stationary condition and derive the fundamental structure of the address generation algorithm. Pseudo IP-address sequence generated from our algorithm gives dependable cache performance and reproduces the results obtained from trace-driven simulation. The proposed algorithm is applicable not only to the destination IP address but also to the destination URLs of packets, and is useful for simulation studies of Internet performance, Web caching, DNS, and so on.

  • Evaluation of Shared Bandwidth for Mobile Multimedia Networks Using a Diffusion Model

    Yoneo WATANABE  Noriteru SHINAGAWA  Takehiko KOBAYASHI  Masaki AIDA  

     
    LETTER

      Vol:
    E82-A No:7
      Page(s):
    1287-1291

    This letter proposes a diffusion model that considers both mobility and multimedia based on the user population process to examine the effects of multimedia in mobile communications. As an application example of this model, the shared bandwidth that can be used by one user in packet communications is evaluated. In this model, the user speed and variation in the number of users in a cell are interrelated with respect to mobility. By examining the shared bandwidth behavior based on multimedia teletraffic characteristics, assuming that the number of simultaneously-communicating users within a cell have self-similarity, we found that shared bandwidth and its variance are not dependent on self-similarity but that variance in the shared bandwidth is dependent on user speed.

  • Stability Analysis for Global Performance of Flow Control in High-Speed Networks Based on Statistical Physics

    Masaki AIDA  Kenji HORIKAWA  

     
    PAPER-Switching and Communication Processing

      Vol:
    E82-B No:12
      Page(s):
    2095-2106

    This paper focuses on flow control in high-speed and large-scale networks. Each node in the network handles its local traffic flow only on the basis of the information it knows. It is preferable, however, that the decision making of each node leads to high performance of the whole network. To this end, the relationship between local decision making and global performance of flow control is the essential object. We propose phenomenological models of flow control of high-speed and large-scale networks, and investigate the stability of these models.

  • Proposal and Evaluation of Method to Estimate Packet Loss-Rate Using Correlation of Packet Delay and Loss

    Keisuke ISHIBASHI  Masaki AIDA  Shin-ichi KURIBAYASHI  

     
    PAPER

      Vol:
    E86-D No:11
      Page(s):
    2371-2379

    We previously proposed a change-of-measure based performance measurement method which combines active and passive measurement to estimate performance experienced by user packets and applied this to estimate packet delay. In this paper, we apply it to estimating loss rate. Since packets are rarely lost in current networks, rate measurement usually requires a huge number of probe packets, which imposes a non-negligible load on networks. We propose a loss-rate estimation method which requires significantly fewer number of probe packets. In our proposed method, the correlation between delay and loss is measured in advance, and at the time of measurement, the time-averaged loss rate is estimated by using the delay of probe packets and the correlation. We also applied our change-of-measure framework to estimating the loss rate in user packets by using this time-averaged loss rate. We prove that the mean square error in our method is lower than that simple loss measurement, which is estimated by dividing the number of lost packets by the total number of sent packets. We evaluated our method through simulations and actual measurements and found that it can estimate below 10-3 packet loss rate with only 900 probe packets.

  • Using a Renormalization Group to Create Ideal Hierarchical Network Architecture with Time Scale Dependency Open Access

    Masaki AIDA  

     
    INVITED PAPER

      Vol:
    E95-B No:5
      Page(s):
    1488-1500

    This paper employs the nature-inspired approach to investigate the ideal architecture of communication networks as large-scale and complex systems. Conventional architectures are hierarchical with respect to the functions of network operations due entirely to implementation concerns and not to any fundamental conceptual benefit. In contrast, the large-scale systems found in nature are hierarchical and demonstrate orderly behavior due to their space/time scale dependencies. In this paper, by examining the fundamental requirements inherent in controlling network operations, we clarify the hierarchical structure of network operations with respect to time scale. We also describe an attempt to build a new network architecture based on the structure. In addition, as an example of the hierarchical structure, we apply the quasi-static approach to describe user-system interaction, and we describe a hierarchy model developed on the renormalization group approach.

  • Autonomous Decentralized Control for Indirectly Controlling System Performance Variable of Large-Scale and Wide-Area Networks

    Yusuke SAKUMOTO  Masaki AIDA  Hideyuki SHIMONISHI  

     
    PAPER-Network

      Vol:
    E98-B No:11
      Page(s):
    2248-2258

    In this paper, we propose a novel Autonomous Decentralized Control (ADC) scheme for indirectly controlling a system performance variable of large-scale and wide-area networks. In a large-scale and wide-area network, since it is impractical for any one node to gather full information of the entire network, network control must be realized by inter-node collaboration using information local to each node. Several critical network problems (e.g., resource allocation) are often formulated by a system performance variable that is an amount to quantify system state. We solve such problems by designing an autonomous node action that indirectly controls, via the Markov Chain Monte Carlo method, the probability distribution of a system performance variable by using only local information. Analyses based on statistical mechanics confirm the effectiveness of the proposed node action. Moreover, the proposal is used to implement traffic-aware virtual machine placement control with load balancing in a data center network. Simulations confirm that it can control the system performance variable and is robust against system fluctuations. A comparison against a centralized control scheme verifies the superiority of the proposal.

  • On the Strength of Damping Effect in Online User Dynamics for Preventing Flaming Phenomena Open Access

    Shinichi KIKUCHI  Chisa TAKANO  Masaki AIDA  

     
    PAPER

      Pubricized:
    2021/09/01
      Vol:
    E105-B No:2
      Page(s):
    240-249

    As online social networks (OSNs) have become remarkably active, we often experience explosive user dynamics such as online flaming, which can significantly impact the real world. Since the rapidity with which online user dynamics propagates, countermeasures based on social analyses of the individuals who cause online flaming take too much time that timely measures cannot be taken. To consider immediate solutions without individuals' social analyses, a countermeasure technology for flaming phenomena based on the oscillation model, which describes online user dynamics, has been proposed. In this framework, the strength of damping to prevent online flaming was derived based on the wave equation of networks. However, the assumed damping strength was to be a constant independent of the frequency of user dynamics. Since damping strength may generally depend on frequency, it is necessary to consider such frequency dependence in user dynamics. In this paper, we derive the strength of damping required to prevent online flaming under the general condition that damping strength depends on the frequency of user dynamics. We also investigate the existence range of the Laplacian matrix's eigenvalues representing the OSN structure assumed from the real data of OSNs, and apply it to the countermeasure technology for online flaming.

  • Stochastic Model of Internet Access Patterns: Coexistence of Stationarity and Zipf-Type Distributions

    Masaki AIDA  Tetsuya ABE  

     
    PAPER-Fundamental Theories

      Vol:
    E85-B No:8
      Page(s):
    1469-1478

    This paper investigates the stochastic property of packet destinations in order to describe Internet access patterns. If we assume a sort of stationary condition for the address generation process, the process is an LRU stack model. Although the LRU stack model gives appropriate descriptions of address generation on a medium/long time-scale, address sequences generated from the LRU stack model do not reproduce Zipf-type distributions, which appear frequently in Internet access patterns. This implies that the address generation behavior on a short time-scale has a strong influence on the shape of the distributions that describe frequency of address appearances. This paper proposes an address generation algorithm that does not meet the stationary condition on the short time-scale, but restores it on the medium/long time-scale, and shows that the proposed algorithm reproduces Zipf-type distributions.

  • Adaptive Timer-Based Countermeasures against TCP SYN Flood Attacks

    Masao TANABE  Hirofumi AKAIKE  Masaki AIDA  Masayuki MURATA  Makoto IMASE  

     
    PAPER-Internet

      Vol:
    E95-B No:3
      Page(s):
    866-875

    As a result of the rapid development of the Internet in recent years, network security has become an urgent issue. Distributed denial of service (DDoS) attacks are one of the most serious security issues. In particular, 60 percent of the DDoS attacks found on the Internet are TCP attacks, including SYN flood attacks. In this paper, we propose adaptive timer-based countermeasures against SYN flood attacks. Our proposal utilizes the concept of soft-state protocols that are widely used for resource management on the Internet. In order to avoid deadlock, a server releases resources using a time-out mechanism without any explicit requests from its clients. If we change the value of the timer in accordance with the network conditions, we can add more flexibility to the soft-state protocols. The timer is used to manage the resources assigned to half-open connections in a TCP 3-way handshake mechanism, and its value is determined adaptively according to the network conditions. In addition, we report our simulation results to show the effectiveness of our approach.

  • New Model of Flaming Phenomena in On-Line Social Networks Caused by Degenerated Oscillation Modes

    Takahiro KUBO  Chisa TAKANO  Masaki AIDA  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/01/24
      Vol:
    E102-B No:8
      Page(s):
    1554-1564

    The explosive dynamics present in on-line social networks, typically represented by flaming phenomena, can have a serious impact on not only the sustainable operation of information networks but also on activities in the real world. In order to counter the flaming phenomenon, it is necessary to understand the mechanism underlying the generation of the flaming phenomena within an engineering framework. This paper discusses a new model of the generating mechanism of the flaming phenomena. Our previous study has shown that the cause of flaming phenomena can, by reference to an oscillation model on networks, be understood complex eigenvalues of the matrix formed to describe oscillating phenomena. In this paper, we show that the flaming phenomena can occur due to coupling between degenerated oscillation modes even if all the eigenvalues are real numbers. In addition, we investigate the generation process of flaming phenomena with respect to the initial phases of the degenerated oscillation modes.

  • Mutual Complementarity between Diffusion-Type Flow Control and TCP

    Chisa TAKANO  Kaori MURANAKA  Keita SUGIYAMA  Masaki AIDA  

     
    PAPER-Network

      Vol:
    E89-B No:10
      Page(s):
    2850-2859

    In current IP-based networks, the application of window-based end-to-end flow control, including TCP, to ensure reliable flows is an essential factor. However, since such a flow control is provided by the end hosts, end-to-end control cannot be applied to decision-making in a time-scale shorter than the round-trip delay. We have previously proposed a diffusion-type flow control mechanism to realize the extremely time sensitive flow control that is required for high-speed networks. In this mechanism, each network node manages its own traffic only on the basis of the local information directly available to it, by using predetermined rules. The implementation of decision-making at each node can lead to optimal performance for the whole network. Our previous studies showed that the mechanism works well, by itself, in high-speed networks. However, to apply this mechanism to actual networks, it needs to be able to coexist with other existing protocols. In this paper, we investigate the performance of diffusion-type flow control coexisting with TCP. We show that diffusion-type flow control can coexist with TCP and the two can be complementary. Then, we show that a combination of both controls achieves higher network performance than TCP alone in high-speed networks.

  • A Proposal of Dual Zipfian Model for Describing HTTP Access Trends and Its Application to Address Cache Design

    Masaki AIDA  Noriyuki TAKAHASHI  Tetsuya ABE  

     
    PAPER-Communication Software

      Vol:
    E81-B No:7
      Page(s):
    1475-1485

    This paper proposes the Dual Zipfian Model addressing how to describe HTTP access trends in large-scale data communication networks, and discusses how to design the capacity of address cache tables in an edge router of the networks. We show that destination addresses of packets can be characterized by two types of Zipf's law. Fundamental concept of the Dual Zipfian Model is in complementary use of these laws, and we can derive the relationship between the number of accesses and the number of destination addresses. Experimental results show that the relation gives a good approximation. Applying this relation, we derive cache hit probabilities of the address cache table that incorporates high-speed address resolution. Using the probabilities, design issues including the capacity of the cache tables and aging algorithms of cache entries are also discussed.

  • Proposal for Designing Method of Radio Transmission Range to Improve Both Power Saving and Communication Reachability Based on Target Problem

    Ryo HAMAMOTO  Chisa TAKANO  Hiroyasu OBATA  Masaki AIDA  Kenji ISHIDA  

     
    PAPER

      Vol:
    E99-B No:11
      Page(s):
    2271-2279

    Geocast communication provides efficient group communication services to distribute information to terminals that exist in some geographical domain. For various services which use geocast communication, ad hoc network is useful as network structure. Ad hoc networks are a kind of self-organing network where terminals communicate directly with each other without network infrastructure. For ad hoc networks, terminal power saving is an important issue, because terminals are driven by the battery powered system. One approach for this issue is reducing the radio transmission range of each terminal, but it degrades reachability of user data for each terminal. In this paper, we propose a design method for radio transmission range using the target problem to improve both terminal power saving and reachability for geocast communication in an ad hoc network. Moreover, we evaluate the proposed method considering both routing protocols and media access control protocols, and clarify the applicability of the proposed method to communication protocols.

  • FOREWORD Open Access

    Masaki AIDA  

     
    FOREWORD

      Vol:
    E96-B No:11
      Page(s):
    2713-2713
21-40hit(51hit)